X %k *

* * ok ok %k ok R ok ok ok ok Xk ok X ok o

X % ¥ F ot

* %

OpSys_FinalExam Questions

01 -- Multiple Choice; 02 -- Term Matching; 12 —-- Bonus Question
03 -- Memory and registers value with x86.py simulator

04 -- Coordination with mutex and condition variable

05 -- Drawing RAG and deadlock detection, deadlock avoidance

06 -- Flash operations in log-structured SSD

07 -- Multi-level index allocation and bitmap size in file system

08 -- File system update w/ vsfs.py simulator

09 -- Timelines of file access operations

10 -- Allocation under ffs

11 -- Journaling and meta journaling

(1) CONCURRENCY (FinalReview Part_1)

1.01 -- (1) Process VS Thread
1.01 -- (ii) PCB VS TCB

1.03 -- Implementation of Lock (HW solution, yielding, sleeping)

1.07 == (1) Draw RAG
1.07 == (ii) Deadlock Detection

1.08 -- Deadlock Prevention VS Deadlock Avoidance

(2) PERSISTENCE (FinalReview_ Part 2)

2.1 -- I/0 Canonical Devices & Protocols

2.2 -- (1) Polling VS Interrupt VS DMA
2.2 -- (ii) Programmed I/O (PIO)

2.3 -- Hard Drive Disk (HDD) VS Solid State Disk (SSD)

2.4 -- Disk Access Steps: Seeks, Rotation, Transfer
2.6 —-- Disk Scheduling (SSTF, C-SCAN/Elevator)

2.10 == (1) Inode
2.10 == (ii) Multi-Level Inode

2.12 -- Timelines for Operations: open(), creat(), mkdir(), read(), write() in VSFS

// 0.03 -- Memory and registers value with x86.py simulator

// simulator x86.py to study concurrency w/ multithreading,

2000 ax
0 0
[0] [0]
[0] [1]
[0] [0]
[0] [0]
[0] [11]
[0] [1]
[1] [11]
[1] [1]
[1] [1]
[1] [1]
[1] [1]
1 1
1 1
1 1
1 1
1 1
1 1
1 1

bx

U T T T S O

Thread 0

1000 mov 2000, %ax
1001 add $1 , %ax
-—--- Interrupt ----
—---- Interrupt ----
1002 mov %ax , 2000
1003 sub $1 , %bx
—-—-—- Interrupt ----
—-—-—-- Interrupt ----
1004 test $0 , %bx
1005 jgt .top

---- Interrupt ----
—-—--- Interrupt ----

fill

in [blanks]

Thread 1

1000
1001

1002
1003

1004
1005

Interrupt ----
mov 2000, %ax
add $1 , %ax
Interrupt ----

Interrupt ----
mov %ax , 2000
sub $1 , %bx
Interrupt ----

Interrupt ----
test $0 , %bx
jgt .top

Interrupt ----

Note that value at memory address 2000 is remains after each interrupt

Counter++ has 3 instructions,

which may result in interleaved operation!

Interleaved operation is where a second op starts before the first one ends
// Load val of counter from mem into reg
// Increment counter

1) moc 0OxOMemAddr,
2) add $0x1 ,
3) mov %eax ,

0xOmemAddr
Since the instructions do not happen atomically
Results in race condition

//

Store it back into mem
(all at once) weird things can happen

// 0.04 -- Coordination with mutex and condition variable

~
*

* % X X o

*

L S T S R S IS S N I R

KNOW WORKER PRODUCER CONSUMER PROBLEMS:

lock t mutex;

lock (& mutex);

ctr++; // CRITICAL SECTION
unlock (& mutex);

Conditional Variable:

Locks are not the only primitives that are needed to build concurrent programs

Before a thread continues its execution,

These put threads in waiting state of its execution until condition is met
Then other threads may be "woken up" by previously waiting threads after execution
(this is called "signaling on the condition")

Condition Variuable has
-— wait ()
A call that is executed

two operations

-- signal ()
A call that is executed
sleeping thread waiting

associated w/ it:

when a thread wishes to put itself to sleep

Condition Variables always used in conjunction w/ a mutex lock in pthread

pthread cond wait(& condition var,

& lock);

most cases require checking for condition first

when a thread has changed something in the program & wants to wake a
on this condition

Example: class registration (capacity: 50)

void register() {

Unenrolled student can reg class if current enrolled < 50

Enrolled student can drop class & one in waiting can reg

Solution

int curr_num =0;

int capacity = 50;

pthread_mutex_t lock;
pthread_mutex_init(&lock, NULL);
pthread _cond_tc;

Quiz: file access (shared among diff threads w/ unique #s)

* File can be accessed simultaneously by several threads, subject to following constraint:

* Sum of all unique #s associated w/ all threads currently accessing file < n

Use condition variables to coordinate access to the file

Solution

int curr_sum =0;

void *access(int my_num) {
start_access(my_num);
//... accessing the file
finish_access(my_num);

}

pIn
curr_sum += my_num,;

pthread_mutex_unlock(&lock);

pthread_cond_broadcast(&c);
pthread_mutex_unlock(&Ilock);

lock(&n
IOCk() // critici

* (Calling the routine lock(&mutex) tries to acquire the lock mutex: unlock(:

* If no other thread holds the lock (i.e., it is free), the thread will acquire the lock (owner) & enter the critical section

* If another thread then calls lock(&mutex) on that same lock mutex, it will not return while the lock is held by another threa

unlock() lock(&
// critici
unlock(:

* Once the owner of the lock calls unlock(&mutex), the lock is now available again:

* If no other threads are waiting for the lock, the state of the lock is simply changed to free

* If there are waiting threads (stuck in lock(&mutex)), one will eventually notice a change of the lock’s state, acquire the lock,
& enter the critical section

Example: Pthread Locks

. pthread_mutex_t mutex
. pthread_mutex_init(mutex, attr) // attr, mutex object attributes (default: NULL)
. pthread _mutex_destroy(mutex) // CORRECTED EXAMPLE
. pthread_mutex_t lock;
. pthread _mutex_lock(mutex) // Attempts to lock a mutex; thread blocks if already locked by another thread
. pthread_mutex_trylock(mutex) // Attempts to lock a mutex; returns w/ "busy" err code if already locked void *worker{void *arg)
. pthread mutex unlock{mutex); // Unlock a mutex if called by the owning thread inti;
// CORRECTED EXAMPLE: “t " /[Bank Account Example:

pthread_mutex_t lock; // Use 1 lock far 2 critical sections!
pthread_mutex_t lock;

void *worker(void *arg) { pthread_mutex_init{&lock, NULL);

inti; Sy .
void withdraw(int amount) {

for (i=0; i < loops; i++) { assert(amount < 0);

pthread_mutex_lock(&lock); pthread_mutex_lock(&lock);
counter++; balance = balance + amount;
pthread_mutex_unlock(&lock); pthread_mutex_unlock(&lock);
} }
return NULL;

void deposit(int amount) {
assert(amount < 0);

pthread _mutex_lock(&lock);

balance = balance - amount;

pthread mutex_unlock(&lock);

Locks: SW Solution
1st attempt w/o HW support

* Asimple var to indicate whether some thread has possession of a lock

oblem 2: sp

in waiting

M | Excl
typedef struct __lock_t { e Exc) typedef struct _ lock_t {
int flag; 0 Shared da;z:cm int flag;
}lock_t; O Process P }Hock_t;
do {
id init(lock_t *lock white
void init(lock_t *lock) { i void init(lock_t *lock) {
lock->flag = 0; // 0: unlocked, 1: locked o lock->flag = 0; // 0: unlocked, 1: locked
)
} typedef struct __lock_t { }
int flag;
Hock-t void lock(lock_t *lock) {
vor initlgs;—kjagicg?{ // 0: unlocked, 1: locked — Whlle (|0Ck->ﬂag == 1) // TEST the ﬂag
} | ; // spin-wait (do nothing)
void lock{lock_t *lock) { i lock->flag = 1; // now SET it!
while (lock->flag == 1) // TEST the flag }
; // spin-wait (do nothing) '
lock->flag = 1; // now SET it!
! Ivoid unlock(lock_t *lock) {
void unlock(lock_t *lock) { J |0Ck‘>ﬂag =0;
lock->flag = 0; | }

}
Solving spin-waiting: yielding
* Simple approach: when going to spin, instead give up the CPU to another thread.

while (lock->flag == 1)
yield(); // give up the CPU
}

* What happens? : 0S switches the threads between running and ready/runnable states

Problem with yielding under many threads: it is still costly

Locks: HW Solution — Controlling interrupts

* Early solution used to provide mutual exclusion was to disable interrupts for critical sections
—invented for single-processor systems

void lock() {

}

Features
* Pros: Simplicity
¢ Cons:

* Requires allowing any calling thread to perform privileged operation (turning interrupts on/off), & thus trust
that this facility is not abused

* Inefficient: code that masks or unmasks interrupts tends to be executed slowly by modern CPUs
* It does not work on multiprocessors
Other hardware primitives

. Test-And-Set (Atomic Exchange)

. Compare-And-Swap

+ threads can put themselves on when some state of execution (i.e., some condition) is nc ~

A condition variable has two operations associated with it:

A condition variable is an explicit queue that sem_t empty,

sem_t full;

as desired (by waiting on the condition); sem_t mutex;

* some other thread, when it changes said state, can then wake one (or more) of those

void *producer(ltemType item) {
sem_wait(&empty);
sem_wait(&mutex);

waiting threads and thus allow them to continue (by signaling on the condition)

* The wait() call is executed when a thread wishes to put itself to sleep; put(item);
* the signal() call is executed when a thread has changed something in the program and sem_post(&mutex);
thus wants to wake a sleeping thread waiting on this condition s,,g,m,,,ﬂpgs_t,(&fu | |);

A condition variable is alwavs used in coniunction with a mutex lock in pthread }

void *consumer(ltemType& item) Pthread condition Variable

sem_wait(&full);

sem_wait(&mutex); + pthread _cond wait(c, m) // assume the mutex m is locked

pthread mutex_tm

item = get(); . .
+ release the lock and put the calling thread to sleep (atomically)
sem_post(&mutex); thread_cond_t ¢
sem_post(&empty); * when thread is waken up, it re-acquires the lock before returning to caller.
} - pthread_cond_init(c, attr)
+ pthread_cond_signal(c) // wake up another thread blocked by specified condition var
pthread_cond_destroy(c)
int main() { ¢+ pthread_cond_broadcast(c) // wake up all threads blocked by specified condition var
t(&empty, 0, MAX);
sem_init(&full, 0, 0);
sem_init(&mutex, 0, 1);
3
Deadlock

Several processes compete for a finite number of resource
A proc requests resource; if resources are not available at that time, the proc enters a waiting state

Sometimes, a waiting process is never again able to change state, because the resources it has
requested are always held by other waiting processes.

Why do deadlocks happen? { Complex dependencies btwn components, Nature of encapsulation }

Deadlock in a law — The best illustration of a deadlock can be drawn from a law passed by
the Kansas legislature early in the 20th century:

“When two trains approach each other at a crossing, both shall come to a full stop and neither shall
start up again until the other has gone.”

Necessary Conditions for Deadlocks (4):

Mutual exclusion: Threads claim exclusive control of resources that they require (e.g., a thread grabs a lock).

Hold-and-wait: Threads hold resources allocated to them (e.g., locks that they have already acquired) while waiting
for additional resources (e.g., locks that they wish to acquire).

No preemption: Resources (e.g., locks) cannot be forcibly removed from threads that are holding them.

Circular wait: There exists a circular chain of threads such that each thread holds one more resources (e.g., locks)
that are being requested by the next thread in the chain.

// 0.05 -- Drawing RAG and deadlock detection, deadlock avoidance

2
* Resource Allocation Graph (RAG): for two threads accessing a printer & a plotter at position T

* V= (T={ Thread A , Thread B} , R = { R Printer , R Plotter }) = Vertices

* Thread A is assigned Printer Resource while Thread B is requesting Plotter Resource

*

* T i, R j) in G -- Thread T i is waiting for Resource R j (request edge) || (T i) ----> [R Jj]
* R j, T i) in G -- Resource R j is allocated to T i (assignment edge) [(T i) <---- [R 3J]
*/

/* Necessary Conditions For Deadlock: (all four conditions must occur for deadlock)
S
* i) Mutual Exclusion -- A resource accessed by multiple processes simultaneously
* ii) Hold & Wait -- A resource holds while waiting requests for mult processes simultaneously
* iii) No Preemption -- Resources cannot be forcibly removed from processes that are holding them
* iv) Circular Wait - Not requesting resources in an increasing order (busy-waiting)
K
*/

/* Deadlock Prevention: (use any one method to block one of the four necessary conditions)
K e e
* i) Prevention of Mutual Exclusion - Preventing a resource from being accessed by multiple
* processes simultaneously (solution is to have the thread grab a lock)
* ii) Prevention of Hold & Wait - Preventing resource holds while waiting requests for multiple
* processes simultaneously (solution : lock all needed resources for thread)
* 1ii) Preemption (or prevention of no preemption) - Allow resources to be forcibly removed from
* processes that are holding them (solution is to not allow locks to be interrupted)
* iv) Prevention of Circular Wait - Request resources in an increasing order so that no circular
* wait condition may occur (busy-waiting)
K e e e o e
*/

Deadlock Prevention - Use a law opposing 1 of 4 necessary conditions (mutual exclusion, hold &
wait, no preemption, circular wait). However, this leads to lower device utilization

Deadlock Avoidance - Use scheduling to require global status of resource usage, & schedule all
requests accordingly (may even delay some requests)

RAG and deadlocks

* Observation 1: If a RAG does not have a cycle, then no process is deadlocked

¢ Observation 2: If a RAG has a cycle, then a deadlock may exist

® @ ©

69

R,

cycle,

@ @ deadlocked

Quiz: Any thread is deadlocked?
Why?

Answer: T4 & T5 are deadlocked

// 0.06 -- Flash operations in log-structured SSD

Xk X o X%

FTL:

X ok X o X%

b

Solid State Drive
-- Flash chips used to store bit(s)
-- Flash chips are organized into Planes
-- Each block has a number of pages
Logical Blocks

Flash Operations:
Operation Format:
States of a Page:
Note that you can only program an erased page,
Log-Structured FTL:
-- for write to logical pg N,
-- for reads to logical pg N,

(SSD) :

(pages)

{ read(pg)

{ read(page=0),
{ INVALID(I),

Benefits of DRAM

- random access,
erase (block=0),

VALID(V),

(random access)
in single transistor

(or banks)

ERASED (E)

4
(typical pg size:
-> Physical Blocks

write(pg) — erase block 1st all bits=1 }

& program(page=0,'a’)

& HDD (persistent)
(charge mapped to bin val)

which contain block groupings

2KB or 4KB)

(pages) [PA]

}

(in memory)

}

& initial pages in block are set to I

uses mapping table to store phys addr of each logical pg in sys
append write to next free spot of that specific pg
use mapping table

5 g

* Flash block size:
* File system block size is 4 KB

*/

16KB && flash page size:

/* File Sys Writes & Sequence of Flash Operations:

* write (int, char) :

*

syntax (starting flash block fsblock, data)

4KB --> 4 pages per block on flash chips

* write (1000,7a’); | erase (block=0); // Erase block 0, set state='E' for pg0-3

* | program(page=0,'a'); // program page 0 with data content 'a'

* write (100, 'b | program(page=1,'b');

* write (500, ’'c | program(page=2,'c');

* write(1, ’'d | program(page=3,'d");

* write(2, e | erase(block=1); program(page=4,'e');

* write (300, 'f | program(page=5,'f");

* write (100, 'g | program(page=6,'qg');

* write (500, ’'h | program(page=7,'h');

* write (1000, "1 | erase(block=2); program(page=8,'i'");

*/

Mapping Table (stores phys addr of each logical page) for Flash Transition Layer Device
BEFORE
fsblock (PA) 0 1 2 3
fspage (PA) 0 2 4 5 6 7 8 9 | 10| 11 12 | 13 | 14 | 15
fsstate I | | I | | | | 1 I I I | |
AFTER

fsblock (PA) 0 1 2
fspage (PA) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
fsstate Vv Vv ' vV Vv vV v ' E E E I I | |
data content a c d e f g h i
mempage (LA) 1000 100 500 1 2 | 300 | 100 | 500 | 1000

From bits to banks/planes

* Flash chips are organized
into planes (or banks)] o
* Within each bank there W e
are a large number of 3
blocks e
« Block size: 128 KB or 256 KB e
* Within each block, there
are a Iarge number of http://flashdba.com/2014/06/20/understandi

ng-flash-blocks-pages-and-program-erases

pages
* Page size: 2KB or 4KB

// 0.07 -- Multi-level index allocation and bitmap size in file system

/* Multiple-Level Index in an inode:
K e e o o o o o o o o o o o o o o o o o e o o e o o e e e

* Direct Pointers
* Indirect Pointers -- points to a block that contains multiple direct pointers
* Double Indirect Pointers -- points to block that contains multiple indirect pointers
* Tripple Indirect Pointers -- points to block that contains multiple double indirect pointers
*/
s inode: example

owners (2)

timestamps (3) Em
—{ dafa | . i
size block count Allocation
—{ data |
* The superblock starts at OKB (1st block);
. * The inode bitmap is at address 4KB (2nd block);
direct blocks 7 . * The data bitmap at 8KB (3rd block).
> data . .
ol * inode region starts at 12KB (4th block).
5 data =

single indirect —{ :@ e inodes

B + [data] ‘|_: B | lnodes B

= oo . — o i i .

il s, 3 T Size of each inode: 128B B o o0000000

|2l .fgam * Overall number of inodes: 160 13 15 16

// Allocation Methods:

‘ 9 “ 4 H16|24|26|1O

23‘

[o] * Keep all pointers to blocks in
a one location
B ¢ Multi-level index.

= @ H E

// Indexed-Based
Extent-based (cont’d)

/@) [(15,6)| (23,9)

[o] El} * A chunk of contiguous spaceis * Advantages
a a allocated initially. * Minimizes head movements
HBa * Ifitis not enough when the fileis * Simplicity of both sequential and direct access
Updéted: another chunk Of * Particularly applicable to applications where entire
e —_— contiguous space (extent) is files are scanned
16 17 18 19
M| added. * Disadvantages for limited available extents
20 21 22 23 ° i ila’ H
The location of a file S blocks is * When the disk is pretty full, the number of big
then recorded as a (first block extents are limited.
location, block count) pair.
// Extent-Based (first_blk loc, blk_cnt)

[o] Linked-based (cont’d)

Scatter logical blocks
throughout the disk.

* Pros:
* Flexible to use any block.

* Link each block to next one * Cons:

by fOI'WEI rd pointer. * Poor direct access
* Not reliable
* May need a backward * Improvement
pointer for backspacing. ¢ Maintain all pointers as a separate linked list,

preferably in main memory.

* Example: File-Allocation Tables (FAT) in MS-DOS,
0s/2.

// Linked-Based

~
~

Extend-Based VS Linux-Based VS FAT VS Index-Based Allocation

/* Extent-Based allocation method:

* Initially start w/ chunk of contiguously allocated space, if need more room when file

* is updated, another chunk of contiguous apace (extent) is added.

*

* Location of a file's blocks recorded as a pair: (start block addr, block count)

*

* pros: Minimal head movement, simple (sequential & direct access)

* cons: Number of big extends available are limited when disk is near full

K e e e e o o o e o e e e o e o o o o e e e o e e e e e e e e e e o e e e e e

* File Allocation Table (FAT) allocation method:

* Allocating new file block: { unused block (0), EOF block (-1) }

* -— Get 1lst '0' blk, replace '-1' blk w/ '0' blk addr, set 'O' blk content to '-1"'

*

* pros: Fast access

* cons: Lacks scalability (whole table must always be in memory to work)

*/

[* *k* HW4_PROBLEM 05: VERY SIMPLE FILE SYSTEM (VSFS)

* Find the physical address of the inode whose number is 101 in vsfs

* inode region starting addr = 3200 KB

* inumber of target inode = 101

* inode object size = 128 B

K

* inode (index node): file meta data, implicitly referred to by its inumber
The reference num (inumber, e.g., 0,1,2,...) is the file’s low-level name

*/

offset = inode size * inumber <==> 128 B * 101 = 12928 B

/* *** HWA_PROBLEM 06: FILE_SYSTEM ORGANIZATION

Find max file size, & number of disk blocks required for 32GB disk bitmap
file sys which has: { disk block size = 2KB, disk block ptr = 4B }

file sys inode has: { 6 direct, 1 single, & 1 double indirect } disk blocks

* ok F

*

* Bitmap

* s |1_i | & |_T | I _|_T |_I | T |_D_I_D |_D |_D |_D | _D |_D |_ D |_D | _D_|_D_ |
* (O D D D P D D P - 15]_16]| |_18]
*

* Bitmap (free space management): gives status of blocks that divide up disk

* Bitmap bit used to indicate if object/block is { free (0) or in-use (1) }

* Bitmap Types : i-bitmap (inode object), d-bitmap (data block)

* Pros : Bitmap is simple & efficient

* Cons : Bitmap requires extra space

* An empty dir has : 2 entries { itself “.” (dot), parent “..” (dot-dot) 1}
* File descriptor : int (fd) representing a “file” object

* Disk Pointer : Direct ptr to disk address

*/

// POINTERS PER BLCOK = sizeof(disk block) / sizeof(disk ptr)
// 2K / 4 = 512 --> 1In(512) / In(2) = 9 ==> 279 [pointers / block]
POINTERS PER BLOCK: ppb = 2"9

// MAX FILE SIZE = blk sz*(dir + ind S*ppb”l + ind D*ppb”2 + ind T*ppb”3)
// 2KB * (6 + 2”9 + 279 * 229) <==> (518 + 2718) * 2KB = 525324000B
MAX FILE SIZE: mfs = 525MB

// NUMBER OF DISK BLOCKS = sizeof(disk) / sizeof(disk block)
// 32GB / 2KB <==> 2735 / 2711 = 2710 blocks (or 16M blocks)
// 32*2730 / (27~11*273*2~11) = 2710
NUMBER OF DISK BLOCKS = 10M disk blocks

// 0.08 -- File system update w/ vsfs.py simulator
// VSFS_FILE SYSTEM STATES: Init file sys states before operation are provided, update state after
/7 (1)

// inode bitmap 1110000
// inodes @ 2:0 r:3] [d a:1 r:2] (B a:-1 r:1] [f a:2 r:11[1[1[][]

// data bitmap 1100000
// data (L@ o (D) (5,8 o100 ., Biarnnnn

mkdir (“/c/y”); // makes new dir

// inode bitmap 1111000

// 1nodes [d a:0 r:3] [d a:1 r:3] [f a:-1 r:1] [f a:2 r:1] [I a:3 r:21 [1I1]11]

// data bitmap 1110000

// data [(.,O)(..,O)(c,l)(f,2)(b,3)][(.,1)(..,O)(y,I)][a][(.,I)(..,1)][][][][]
// (2)

// inodes a:0 r:3] [d a:1 r:2] [1[01[010)(011]
// data bitmap 1000000

// inode bitmap :ioooooo
[
// data (LGB s,D DG B Do

creat (“/s/v”); // creats empty file

// inode bitmap 11 00000

// 1inodes [d a:0 r:3] [d a:1 r:2] [I a:-1 r:11 [101011011]

// data bitmap 11000000

// data [(.,0)(..,0)(s,1)] [(.,1)(..,0)(V,I)] (I0ICI010110)
// (3)

// inode bitmap 1110000
// inodes @ 2:0 r:3] [a:1 r:1] (@ a:2 r:2] [f a:-1 r:1] [J1(1(1[]
// data bitmap 1100000

// data 0GB GD v, @1 K (LB LB (£,3)7 [T 01000
fd=open (“/y/£f”, O WRONLY | O APPEND); write(fd, buf, BLOCKSIZE); close (fd);

// write(int fd, const void * buf, size t cnt); // write up to cnt bytes from buf2file
// O_WRONLY ensures it is only written to // O APPEND ensures offset is EOF b4 each write

// inode bitmap 11110000

// inodes [d a:0 r:3] [f a:1 r:1] [d a:2 r:2] [f a:3 r:2] []1I[]I[11]
// data bitmap 11110000

// data [(.,0) (..,0) (3, 1) (y,2)] [kl [(.,2)(..,0)(£,3)] [£101[0I0TIL]
// (4)

// inode bitmap 100@o00
// inodes @ a:0 r:3] [d a:1 r:2] [] [] [I a:2 r:1] [1 [1 T[]

// data bitmap 1100000
// data (LB G @ o, G LD L@ (k) DI

link(“/3”, “/n/w”); // link("old/path","new/path");

// inode bitmap 1100000

// inodes [d a:0 r:3] [d a:1 r:2] [] [] [f a:2 r:2] [1I[11]

// data bitmap 11@00000

// data [(.,O)(..,O)(nrl)(jrl)] [(.,1)(..,0)(W,I)] (kI (1010101101

/* __

* NOTES (for vsfs file system state changes):

*

* Data Organization: (entry name, inode number)

* inode: [f(type) a:-1(block) r:1(reference countr)] <==> file, empty, 1 ref

* [£f a:10 r:1] <==> file, block 10, 1 ref

* [d a:2 r:2] <==> dir, block 2, 2 ref

K e e e o o o o o o o o o o o o e o o o e o o o o e e
* Reference Count:

* —— Dir : Num of references to its inumber in all directories including itself

* —— File: Num of references to its inumber in all directories

// 0.09 -- Timelines of file access operations (open()/creat()/mkdir()/read()/write() in VSFS)

/* inode bitmap indicates allocation status of inodes (1 - used, 0 - available)
* inodes table of inodes & their content
* data bitmap indicates data block allocation status (e.g., 1110 - 1st 3 used)
* data indicates data block contents (e.g., [(.,0)(..,0)] for new dir)
K e e
* mkdir () creates a new dir
* creat () creates a new empty file
* open(), write(), close() appends block to a file
* 1link () creates hard link to file (cmd: "1n" in Unix)
* unlink () unlinks file (removing it if link count == 0)
*/
(Part-A) : create dir w/ 2 data blocks: “/0S19W/Homework”
data inode root 0S19W Homewor root | OS19W | Homework Homework comments
bitma bitmap [inode inode k inode data data data [0] data [1]
p
r r root inode
r r root data block to get dir inode
r r dir inode addr to get dir data
mkdir(r r dir data block
"/OS19W\ r r inode bitmap, find available inode #
/Homework" w w to mark new inode as allocated
); w w dir data (link child dir name-inode)
r r child dir inode dst into mem
w w to initialize child dir inode
w w to update parent dir inode
data inode root 0S19W Homework HW1 root 0S19W Homework Homework HW1 HW1
bitmap bitmap I inode inode inode inode I data data data [0] data [1] data [0] data [1]
(Part-B) : create empty file “HW1. txt”
v
r
r
r
create(r
"/OS19W\ ;
/Homework\ ;
JHW1.txt"
); w
w
r
w
w
(Part-C) : write to HWl file w/ 2 new data blocks (starting after opening file)
r
r
write() w
w
w
r
r
write() w
w
w
(Part-D): read two data blocks from HW1l file (starting after opening file)
r
read() r
w
r
read() r
w

//
//
/*

*

* % kX ok %

/*

*

*/
/*

~
* % ok X o ok 3 X X o o

*

X% X ok ok ok X X ok % %

0.10 -- Allocation under FFS (Fast File System)

FFS_MAIN GOAL: keep related stuff close & unrelated stuff far apart (spatial locality)

NOTES

FFS Disk: divided up into a number of Cylinder Groups (set of N consecutive cylinders)
Cylinder: set of tracks on diff surfaces of hard drive, equidistant from HDs center
CylGroup: has { Super Block, Inode Bitmap, Data Bitmap, Inodes, Data Blocks }
BlkGroup: organizational structure typically used for file system, which actually

are just consecutive portions of a disk's logical addr space (not real groups)

FFS Directory Policy:
Directory data & inode are allocated to a cylinder group w/ few number of directories
(to balance dir load across groups) & high number of free inodes (to allocate files)

FFS Sml File Policy:
(1) Allocate file's data blocks within cylinder group of its inodes (no long seeks)
(2) Place all files of same dir within cylinder group of the dir they are in

Problem: Need to avoid lrg file filling up block group it was first placed in, as it
prevents related files from being able to be placed within that block group, as well
as hinders file-access locality.

Solution: After N number of direct pointers within an inode (= number of blocks) have
been allocated into the first block group, the following chunk of the file will be
placed into a diff block group which is pointed to by the first indirect block.

following portions (or chunks) of the file are placed into different block groups,
pointed to by indirect pointers

LRG_FILE PTR STRUCT:
Larger files require structures within inodes. An indirect pointer is used to point to
more pointers which point directly to a data block. This type of inode structure
provides a single indirect ptr, as well as a small fixed number of direct pointers.

Once a file in lrg enough, the indirect ptr will point to a newly allocated indirect
block (provided from a disk's data-block region), containing pointers to data blocks.

Consequently, double & triple indirect pointers give further support as need be. A dbl
indirect ptr would reference a block of single indirect pointers. The single indirect
pointers would then reference indirect blocks with pointers to data blocks. Etc.

//

/*

LR R S I S S S S S S S

*

% ok X ok ok ok X X X o

~
*

% ok X X ok % %

*

L I S T T S S S

0.11 -- Journaling & meta journaling
DATA JOURNALING NOTES: (How does Journaling handle crash issue?)
Write-Ahead Logging ("called journaling for file systems for historical reasons") was

the idea that when updating a disk, before overwriting structures, write a note first
that indicates what you are about to do. The written note is the "write-ahead", and it
is written to a structure which is organized as a "log"

Updating (overwriting) structures may cause a crash, & if so, the journaling of which
structures were being updated before the even took place will greatly ease the amount
of work required for recovery afterwards (no need to scan disk, since it was logged)

inode (I[v2]), bitmap (B[v2]), data block (Db)
Transaction Begin Block: TxBegin --> TxB
Transaction End Block: TxEnd --> TxE

Journal: |_TxB_(id:1)_|_I[v2]_|_B[v2]_|_Db__TxE_\

Typically this mode of journaling is called Data Journaling since it logs all
of the user data in addition to the metadata of the file system

4-Major Steps of Data Journaling:

(1) Journal Write -- write contents of transaction (TxB, & update contents) to log
-- waitdwrite2complete

(2) Journal Commit -- Write transaction commit block (containing TxEnd) to the log
-- waitdwriteZ2complete (transaction is now committed)

(3) Checkpoint -- Write update contents to their final locations within file system

(4) Free -- Mark transaction free in journal (via updating journal superblock)

METADATA JOURNALING NOTES: (How does it reduce writes?)

Due to cost of writing every data block to the hard disk twice, a simpler form of
journaling called ordered journaling (or metadata journaling) was created.

User data block (Db) is not written to the log in this case, it is written to the file
system proper (to avoid extra writing) - substantially reduces I/0 load of Jjournaling

Crash Consistency Rule: "write pointed-to object before the object that points to it"
Need to write the Db (of reg files) to disk BEFORE the related metadata(I[v2] & B[v2])

5-Major Steps of Metadata Journaling:

(1) Data Write -— write the final location
-- waitdwrite2complete (optional)

(2) Journal Metadata Write -- write the transaction begin block (TxB) & the metadata to the log
-- waitdwriteZcomplete

(3) Journal Commit -- Write transaction commit block (containing TxEnd) to the log
-- waitdwrite2complete (transaction & data is now committed)

(4) Checkpoint Metadata -- Write metadata update contents to final locations in file sys

(5) Free -- Mark transaction free in journal (via updating journal superblock)

* Interrupts thus allow for overlap of

computation and 1/0, which is key for
improved utilization.

1: process 1
2: process 2
p: polling
Polling
CPU 111111111 1pppppPPPPPPpl111111111111
Disk ---------- 111111311111 -------"-----

Interrupt
CPU 111111111122222222222111111111111

Basic geometry for magnetic disks Disk structure

 The head is currently

* The scheduler thus has to

* So which should it service

Platter

* Two surfaces of magnetic
layer

rack { e A: Track
<

* Tracks, sectors
Disk head
 Attached to disk arm oylinder ¢

* C: Track sector
e D: Cluster

Spindle
* 7,200 RPM to 15,000 RPM ***'

. * B: Geometrical sector

Direct Memory Access (DMA)

* When the main CPU is involved with the data movement,
we refer to it as programmed 1/O (PIO).

* Problem with PIO when transferring a large chunk of data:
* The CPU is again overburdened with a rather trivial task.

* Waste a lot of time and effort that could better be spent running
other processes.

C: initiates the I/O copying the data from memory to
the device explicitly, one word (each c) at a time.

PIO
CPU 1111111111lccececeec22222222222111111111111
Disk --------mmmeoo 11111111111 ------------
DMA
CPU 111111111122222222222222222111111111111
DMA ---------- CCCCCC---=-=-=-=-----------------
Disk —--------m-m-m - 11111111111 ------------
. Optimize I/0 performance
§ I/0 time

* TI/O = Tseek + Trotation + Ttransfer
1/0O rate
* Ryo= Siz€1ransfer/ Tio

Objective

Access process rotation

* First, move disk arm to desired cylinder. . Large R —> short T

* Then, rotates the desired sector into the position under the http://en.wikipedia.org/wiki/Disk_sector 1/0 1/0
head. D

Performance evaluation Issues in SSTF SCAN and C-SCAN

SSTF: Shortest Seek Time First

* Compare time for service for given request
sequence, distinguish only by track.

SSTF orders the queue
of 1/0 requests by
track, and picks the
request on the nearest
track to complete first.

* The seek time highly depends on locality.

Requests 21 and 26

How to account for disk rotation costs? Redundant Array of Independent Disks (RAID)

= RAID

+ A technique to use multiple disks in concert to
build a faster, bigger, and more reliable disk system.

Rotates this way
tgtates tis w

positioned over sector 30
on the inner track.

* The term was introduced in the late 1980s by
a group of researchers at U.C. Berkeley

decide:

* Should it schedule sector
16 (on the middle track) or
sector 8 (on the outer
track) for its next request.

+ Led by Professors David Patterson and Randy Katz
and then student Garth Gibson.

nes
* Itdepends.

How to evaluate a RAID Fault model

* Transparency * Fail-stop: working or failed

* Capacity * When a disk has failed, we assume that this is
+ Reliability easily detected.

* Performance

RAID level 1: mirroring RAID level 4: saving space with parity
- Duplicate chunks in multiple disks. + We added a single parity block that stores the
* The following arrangement is a commen one and is : : :
sometimes called RAID-01 because it striped data redundant information for that stripe of
(RAID-0) on top of mirrored pairs. blocks.

* Another common arrangement is RAID-10, which

mirrors on top of two arrays that each perform striping Disk0 Disk1 Disk2 Disk3 Disk4

internally. 0 1 2 3 PO
4 5 6 7 P1
Disk 0 Disk1 Disk2 Disk3 8 9 10 11 P2

-0 90 1 1

T 12 13 ! 15 P3
j ' ; : o <1 €2 c3 P
’ : 00 1 1 XOR(©0,1,1)=0
0 1 0 0 XOR(0,1,00) =

* Problem 1: the drive geometry is not available; SCAN (or Elevator) simply moves back and
rather, it sees an array of blocks. forth across the disk servicing requests in
order across the tracks.

* Instead of SSTF, an OS can implement nearest-) X
block-first (NBF) * We call a single pass across the disk (from outer to

_ inner tracks, or inner to outer) a sweep.
Problem 2: starvation - C-SCAN (circular SCAN)
* Instead of sweeping in both directions across the
disk, the algorithm only sweeps from outer-to-
inner, and then resets at the outer track to begin
again.

* How can we implement a SSTF-like scheduling
algorithm but avoid starvation?

* Doing so is a bit more fair to inner and outer tracks.

Features of RAID Interface and internals of RAID
- Transparency * Interface
. * Toa file system above, a RAID looks like a big, {hopefully)
* Capacity fast, and (hopefully) reliable disk,
* Reliability = Internals

* A RAID system is often built as a separate hardware box,

+ Performance with a standard connection (e.g., SCS, or SATA) to a host.

« Ata high level, a RAID is very much a specialized computer
system: it has a processor, memory, disks, and specialized
software.

* When a file system issues a logical /O request to the RAID,
the RAID internally must calculate which disk (or disks) to
access in order to complete the request, and then issue one
or more physical I/Oes to do so.

RAID designs RAID level O: striping
. « Spread the blocks of the array across the disks in a round-
RAID Level 0 robin fashion.
* striping + Each round allocation is called chunk.
« RAID Level 1 *+ Each chunkcauld be mult-blocks.
« Chunksize
* mirroring « small chunk size implies better parallelism of reads and writes to

asingle but longer the positioning time.
* A big chunk size implied shorter positioning time to disks.

* RAID Levels 4/5

* parity-based redundancy

Disk0 Disk1 Disk2 Disk3 Disk0 Diskl Disk2 Disk3
2 3 0 2 4 3
4 5 6 7 1 s 7
s 9 10 1 8 oo
12 13 4 15 9 1 13 15
Ghucksze = 1 block (4KB) Chuck size = 2 blocks (5K6)
RAID level 5: rotating parity Outline
* It rotates the parity block across the drives. * Hard disk basics
* Hard disk scheduling
Disk 0 Disk1 Disk2 Disk3 Disk 4 * RAID
0 1 3
- 2 L] * Flash-based 55D
5 6 7 P1 4
10 11 P2 8 9
15 P3 12 13 14
P4 16 17 18 19

Solid state disk (SSD)

* NAND-based flash

* Simply built out of transistors, much like memory
(DRAM)

* No mechanical or moving parts like hard drive disk
(HDD)

* Benefits

+ Combination of both DRAM (random access) and
HDD (persistent)

States of a page

« Invalid(i); valid(V); Erased(E)

* You can only program an erased page

Storing bits

* Flash chips are designed to store one or more bits
in a single transistor

« The level of charge trapped within the transistor is
mapped to a binary value

* Single-level cell (SLC) flash:

« only a single bit is stored within a transistor (i.e., 1 or 0)
* Multi-level cell (MLC) flash:

* More bits are encoded into different levels of charge

+ eg., 00,01, 10, and 11 are represented by low,
somewhat low, somewhat high, and high levels

Erase (a block)

* Make sure that any data you care about in the
block has been copied elsewhere (to memory,
or to another flash block) before executing the

erase.

iiii Initial: pages in block are invalid (i)
Erase{) -» EEEE State of pages in block set to erased (E)
Program(0) -> VEEE Program page O; state set to valid (V)
Program(0) -> error Cannotre-program page after programming
Program(l) -> VVEE Program page 1
Erase() -» EEEE Contents erased; all pages programmable

Reliability

* Wear out
* MLC-based block: 10,000 P/E cycles
+ SLC-based block: 100,000 P/E cycles

* Program disturbance

P/E: Program/Erase

From raw flash to flash-based SSDs .

From bits to banks/planes

Flash chips are organized
into planes (or banks)

Within each bank there

o

are a large number of

blocks e
W

* Block size: 128 KB or 256 KB

Within each block, there
are a large number of
pages

* Page size: 2KB or 4KB

Basic flash operations

READ (A PAGE) WRITE (A PAGE)

* Random access * Erase the whole block
regardless of location first
on the device + setting all bits in the block
o1
* Program some of the 1's
within a page to 0’s as
desired

similar to DRAM Different from DRAM

A detailed example: modify Page 0

Page 0 Page 1 Page 2 Page 3
00011000 11001110 | 00000001 | 00111111
VALID VALID VALID VALID
Page 0 Page 1 Page 2 Page 3

[[| it [11|
ERASED ERASED ERASED ERASED
Page 0 Page 1 Page 2 Page 3

[eooooot1 | 11ttt [tddt111 [1111111 |
VALID ERASED ERASED ERASED
Page 0 Page 1 Page 2 Page 3

[00000011 11001110 | 00000001 [00111111 |
VALID VALID VALID VALID

Design concerns for FTL

Wear out

+ Program disturbance

* When programing a particular page within a flash,

it is possible that some bits get flipped in

neighboring pages

FTL organization approach: direct mapped

= Aread to logical page N is mapped directly to
a read of physical page N.
= A write to logical page N:

« the FTL first has to read in the entire block that
page N is contained within;

« it then has to erase the block;

« finally, the FTL programs the old pages as well as
the new one.

Not good design!

An example

1. Write(100) with contents al Program Page 0
2. Write(101) with contents a2 Program Page 1
3. Write(2000) with contents b1~ Program Page 2
4. Write(2001) with contents b2~ Program Page 3

Block 0 1 2
Pge 0 1 2 3|4 5 & 7 [8& 9 10

e I R

* Flash translation layer (FTL)

* logical blocks (pages) -> physical blocks (pages)

A log-structured FTL

* Upon a write to logical page N, the device
appends the write to the next free spot in the
currently-being-written-to page.

To allow for subsequent reads of page N, the
device keeps a mapping table in its memory,
and persistent, in some form, on the device

* This table stores the physical address of each
logical page in the system.

An example

Erase Block 2
Program Page 4
Program Page 5

»

. Write(100) with contents c1
. Write(101) with contents c2

o

Block o 1 2

Pige 0 1 2z 3|4 5 6 7|8 9 10 11

e N 2 e

An example

1
2.
3.
4.

Block
Page

state

+ Write amplification:

+ Itis defined as the total write traffic (in bytes) issued to the flash chips
by the FTL divided by the total write traffic (in bytes) issued to the SSD.

Design goals for FTL
+ Reducing wear out

s Wear leveling: try to spread writes across the blocks of the flash as

evenly as possible.

+ Reducing program disturbance

page.

* Program pages within an erased block in order, from low page to high

+ Reducing write amplification
* Reduce write traffic to 5SD.

Each time write/read 2 whole
page (page size: 4K)

‘Write(100) with contents al
‘Write(101) with contents a2
‘Write(2000) with contents b1
‘Write(2001) with contents b2

An example

1
2.
3.
4.

Block
Page

state

Write(100) with contents a1l
‘Write(101) with contents a2
‘Write(2000) with contents b1
‘Write(2001) with contents b2

Erase Block 0

A

Block
Page
State

n example

Garbage collection
* Both Pages 0 & 1

An example

Block
Page
State

Garbage collection
* Both Pages 0 & 1

* Erase Block 0 and Program Pages 2 & 3 into Pages 6
&7

a1

al‘&u‘hz

Table 100-50; 101->1; 2000-52; 200153

Teble 100-0; 101->1; 2000-52; 2001-53; 100->4; 101-55;

Table

100-50; 101-51; 2000-%2; 2001-53; 100->4; 101->5;

Table

100->4; 101->5; 2000->6; 2001-57;

//
// (1) CONCURRENCY (FinalReview_Part 1)

//
/* PROCESS VS THREAD:

* Process (isolated memory) :
-- Single point of execution within a program where instructions are fetched & executed from

* —-— Memory isolation for protection & reliability (e.g., google chrome browser)
S
* Thread (shared addr space):

* -- Threads within a process share the same address space (i.e., code, data, heap, & open files)
* —-— Each thread will have it's own unique program counter (PC), register set, & stack

*

-- Fast thread creation, fast context switching, saves memory by sharing (e.g., web servers)

Scenario 1 (Multi-Thread Solution):

web server network: When too many processes are concurrently accessed.

-—- The best method is a multi-threaded solution as they are accessing a shared memory which
provides opportunity for parallel execution of lighter-weight and more responsive processes.
Another opportunity for multi-threading optimization is provided when crunching large data set
computations, where you can transform a single-threaded program into a multi-threaded program
that can split up the work between multiple CPUs (parallelization)

% ok X X X %

*

Scenario ii (Multi-Process Solution):

Internet Browsing: With only a single process requiring unique access to a memory resource.

—-— The best method is a multi-process solution as it provides isolation (no other processes have
access to this memory space) between processes - ensuring a high degree of reliability.

However, this is more time & resource intensive due to added context switching btwn processes

* % Xk X o

* PROCESS CONTROL BLOCK (PCB) :
* Contains info on the containing process: Addr space, code, general registers, OS resources
* —-- But NO processor state, will have one or more TCB's linked to it

* THREAD CONTROL BLOCK (TCB) :
* Contains specific info abt a single thread: PC, SP, thread state/status, reg values, ptr to PCB

* —-— Just processor state & pointer to corresponding PCB (of the process that the thread is in)
K e e e e o o o o o o o o o o o o o o o o o o e o o o e e
*/

// 1.02 -- Race Condition *** Talk about interleaved operations and the 3 instructions of a ctr

/* If two threads execute ctr++, sharing the ctr var, a race condition occurs. The ctr may not
* always get incremented by both threads depending on the context switching times during execution
* Race Condition (or data race) - Where the outcome of the code is dependent upon the timing of
* the execution and therefore results in an indeterministic computation
* Mutual Exclusion - Prevent 2 concurrent processes from accessing critical section simultaneously

*/

// 1.03 -- Implementation of Lock (HW solution, yielding, sleeping)
/* Difference between yielding & sleeping methods used to overcome spinning waiting:

S
Since the sleeping method will not cause threads to compete for CPU resource, as they are placed
in blocked/waiting state, the sleeping method is more efficient for CPU utilization
Yielding Method: yield(); - Allows the thread to give up CPU to another thread, instead of
spinning (doing nothing). Causes OS to switch threads btwn running & ready/runnable proc states
Sleeping Method: sleep(); - Allows the thread to be placed into a sleep-queue. This will put the
sleeping thread into a blocked/waiting process state, where it will not compete for CPU resource

% ok X X o

*

TestAndSet (Atomic Exchange) -- An atomic (non-interruptible) operation that enables “testing”
of old val (which returns int) while simultaneously “setting” the ptr (mem loc) to the new val.
This is used to implement lock as it can enables you to continuously test the lock's “flag”.
Thus, can force thread to wait, & set flag var to "locked" immediately after it becomes unlocked
New t accesses crit sect w/ ensured mutual exclusion (e.g.: while(TestAndSet (&lock->flag,1));

* % X o ok %

//
// (2) PERSISTENCE (FinalReview_Part 2)

//
// 2.01 -- I/0O Canonical Devices & Protocols

/* Canonical Device Registers (3):
K e

Status Register : read to check current status of a given device

* Command Register : used to tell the device to perform a given task

* Data Register : transmits or receives data to/from a given device

*/
// 2.02 -- (i) Polling VS Interrupt VS DMA
/* Polling -- Good for fast devices

K e e e e e o o o o e
* Inefficient CPU time wasted for checking polling flags, however if you have more important tasks
* allowed to interrupt the CPU & don’t want to let unimportant tasks flood the CPU message stream,
* polling is a good solution. E.g., PS/2 port interrupts from older keyboards vs USB bus polling

* from modern keyboards. Or polling your e-mail periodically rather than getting spammed

* interrupts throughout the day every time you receive an email.

*/

/* Interrupt —-- Good for slow devices

* When you need something handled immediately, like say when the power button is hit on the \
* computer & the hardware triggers an IRQ for an ISR to preserve the most important registers
* before shutting down

/* Direct Memory Access (DMA) -- Good for large data transfer
Allowing the peripherals total control of the memory buses (privileged) to transport data back

*
* and forth from the I/O devices to the main memory unit. E.g., GPUs capable of processing

* graphics data may want to access main memory unit without the slowdown oversight management of
*

*

the CPU
/
// 2.02 -- (ii) Programmed I/O (PIO)
// 2.04 -- Disk Access Steps: Seeks, Rotation, Transfer
// 2.05 -- Sequential Access VS Random Access
// 2.06 -- Disk Scheduling (SSTF, C-SCAN/Elevator)

// 2.08 -- Reading/Writing Performance & Reliability for RAIDs 0,1,4/5

* RAID-0 (striping): Spliting array of blocks across multiple disks (via RR)
* pros: faster r/w speeds
* cons: no data redundancy

* RAID-1 (mirroring): Duplicating full chunks of data onto multiple disks
pros: redundancy of data (not striping)
cons: slower (double the writing)

Single-Disk vs. Two-Disk RAID-0

* %

*

2Disk RAIDO: higher chance of data loss, no redundancy, very fast for r/w
Single Disk: better data integrity, slower due to only single disk for r/w

* % X ot

*

Single-Disk vs. Two-Disk RAID-1

* % % %

2Disk RAID1: fault tolerance (redundancy) but halves storage, slower r/w
Single Disk: faster for r/w, equivalent storage space, zero data backup

// 2.10 -- (i) Inode
// 2.10 -- (ii) Multi-Level Inode

HW_4
// T: ALLOCATION_ METHODS

/* Extent-Based allocation method:
K

Initially start w/ chunk of contiguously allocated space, if need more room when file
is updated, another chunk of contiguous apace (extent) is added.

-- Location of a file's blocks recorded as a pair: (start block addr, block count)
pros: Minimal head movement, simple (sequential & direct access)

* cons: Number of big extends available are limited when disk is near full

*/

/* File Allocation Table (FAT) allocation method:

* % X o

Allocating new file block: { unused block (0), EOF block (-1) }

-— Get 1st '0' blk, replace '-1' blk w/ '0' blk addr, set 'O' blk content to '-1"'
pros: Fast access

cons: Lacks scalability (whole table must always be in memory to work)

%

1) Describe scenarios to show that multi-process is better than multi-thread & vice versa
Scenario i — Busy web server network: When too many processes are concurrently accessed. In this scenario, the better method is a multi-
threaded solution as they are accessing a shared memory which provides opportunity for parallel execution of lighter-weight and more responsive
processes. Another opportunity for multi-threading optimization is provided when crunching large data set computations, where you can transform
a single-threaded program into a multi-threaded program that can split up the work between multiple CPUs (parallelization)
Scenario ii — Internet Browsing: When there is only a single process requiring unique access to a memory resource, the better method is a multi-
process solution as it provides an avenue of isolation (no other processes have access to this memory space) between processes — ensuring a high
degree of reliability. However, this is more time & resource intensive due to the added context switching between processes and the creation of
new processes

2) If two threads execute ctr++, sharing the ctr var, a race condition occurs. The ctr may not always get incremented by both

threads depending on the context switching times during execution

* % X ok %

3)
Race Condition (or data race) — Where the outcome of the code is dependent upon the timing of the execution and therefore results in an
indeterministic computation
Mutual Exclusion — Preventing two concurrent processes from accessing critical section simultaneously

4) Since the sleeping method will not cause the threads to compete for CPU resource, as they are placed in the blocked/waiting

state, the sleeping method is more efficient for CPU utilization
Yielding Method: yield(); — Allows the thread to give up CPU to another thread, instead of spinning (doing nothing). This causes OS to switch the
threads between running & ready/runnable process states
Sleeping Method: sleep(); — Allows the thread to be placed into a sleep-queue. This will put the sleeping thread into a blocked/waiting process
state, where it will not compete for CPU resource

5) TestAndSet to implement lock (0: unlocked, 1: locked): int TestAndSet(int * ptr, int new)

TestAndSet (Atomic Exchange) — An atomic (non-interruptible) operation that enables “testing” of the old value (which is return int) while
simultaneously “setting” the ptr (memory location) to the new value

This is used to implement lock as it can enables you to continuously test the “lock” ptr’'s Boolean member variable, “flag”, passed in by reference.
Therefore, it can force a thread to wait, and then set the flag variable to a new locked position immediately after it becomes unlocked, allowing
new thread to access the critical section (ensuring mutual exclusion). E.g., while(TestAndSet(&lock->flag, 1));

6) xv6 Locking — CPU & memory system communication w/ each other to guarantee operations take place on a memory
location that xchg is currently reading to or writing to, in order to avoid data inconsistency. xchg is an atomic operation
responsible for swapping words in memory w/ contents of a register. Thus, it can freeze CPU memory activities for a
specified address while performing a context switch, and then unfreezes the memory activities once swapped

