* Computer Performance dependencies: { Processor Performance, Memory System Performance }

* SRAM -- fast but requires more space than DRAM (4-6 transistors)
* DRAM -- sml but much slower than SRAM (factor of 5-10), val stored as charge on capacitor

* Caches use SRAM for speed & technology compatibility; often hold most recently used data

* —-— Low density (6 transistor cells), high power, expensive, fast

* —-— State: content will last "forever" (until power is turned off)

K e e e e o o e e o o o o o o e e o o e e o e o e o o e e o e e o e o e e e e
*/

/* Memory Hierarchy:

*

* A
* | | Tech: | Price / GB | Access Time (ns) | Bandwidth (GB / s) |
* | | \ | \ |
* | | SRAM | $10,000 | 1 \ 25+ |
* | | \ | \ |
* | | DRAM | $10 | 10 - 50 \ 10 |
* 8| | \ | \ |
* p | | SSD | $1 | 100,000 \ 0.5 |
* e | | HDD | $0.1 | 10,000,000 \ 0.1 |
* e | | \ | \ |
* d |

o e > *Note: DRAM (Main Mem) 1is PHYSICAL; Hard Drive is VIRTUAL Mem
* Capacity
g,
* Locality (Temporal/Spatial): Exploit locality to make memory accesses fast

*

*

* Temporal Locality:

* —— Locality in time (recently used data likely to be used again soon)

* —-- Exploit by keeping recently accessed data in the higher levels of memory hierarchy

*

* Spatial Locality:

* —— Locality in space (used data likely to be used alongside nearby data)

*

-- Exploit by bringing data nearby accessed data into higher levels of memory hierarchy

*

* Amerage Memory Access Time (AMAT) : avg time for processor to access data
* Hit : data found in that level of memory hierarchy

* Miss : data not found, goto next level of memory

*

* Hit Rate (Hit Cnt / MemoryAccess Cnt)

* Miss Rate (Miss Cnt / MemoryAccess Cnt) = 1 - Hit Rate

* AMAT t cache + MR cache (t MM)

*

*

AMDAHL'S LAW: The effort spent increasing performance of a subsystem is wasted unless subsystem
affects a large percentage of the overall performance

* EXAMPLE 1: Processor w/ 2-levels of hierarchy: cache & main memory

*

* -— Program has 2,000 loads & stores, and has 1,250 of these data values in cache

* —— t _cache =1 cycle

* —— t MM = 100 cycles

*

* What is are the hit & miss rates for the cache, and what is the AMAT of the program ?
*

* Hit Rate = 1250 / 2000 = 0.625

* Miss Rate = 750 / 2000 = 0.375

* AMAT =1 + 0.375(100) = 38.5 cycles

A e e EEE R
// (2) Cache

/] ==

* Cache ideally anticipates needed data & puts it in cache, but it is impossible to predict puture

* Past2Predict Future: Temporal & Spatial Locality used to anticipate data usage to place in cache

* Temporal Locality : cp recently accessed data into cache
* Spatial Locality : cp neighboring data into cache
* Cache Line : a memory block that is transferred to a memory cache

* Capacity (C) Number of data bytes in cache

* Block Size (b)) Bytes of data brought into cache at once (b = log 2 (B))

* Numberof Blocks (B) : Number of blocks in cache (B = C / b)

* Degree of Associativity (N) : Number of blocks in a set

* Numberof Sets (S) : Each mem addr maps to 1 cache set (S =B / N)

* Set Index (s) (s =1og 2 (S))

K e e e o o o o o o o o o o o o o e e
*/

* Caches are organized into S sets, and caches are categorized by the number of blocks in a set N
*

* Direct Mapped : 1 block per set

* N-Way Set Associative : N blocks per set

* Fully Associative : All cache blocks are within 1 set

K
* Format of addr mapping for direct & set-associative mapping:

*

* Physical Memory Word Address |

* | _Block Address | Block Offset |

* | Tag | Set Index | Block Offset |

*

Main Disadvantage of Direct Mapping:

The fact that each block in the cache has a fixed location means that the hit ratio will be low
(lrg amount of cache misses). This is due to having multiple processes accessing blocks mapped
to the same line (same index in phys addr but having different tag values), which causes the
blocks to be swapped in and out of cache since they cannot both reside in cache simultaneously.

* % X X o

*/
Address /* EX: Direct Mapped Cache to 8 Sets
11...11111100 mem[OXFF...FC] K
11...11111000 mem|[OXFF...F8] * C = 8 words (capacity)
11..11110100 mem|[OXFF...F4] . -1 1k si
11...11110000 mem[OxFF...FO] b = word (b size)
11...11101100 mem[OxFF...EC] ¥ e
11...11101000 mem[OxFF...E8] * Thus, num of blocks, B = 8
11...11100100 mem[OxFF...E4] * /
11...11100000 mem[OxFF...E0]
. B
: : /* Other cache notes:
00...00100100 mem[0x00...24] B e e e
00...00100000 mem[0x00..20] Set Number * Cache is too small to hold all data needed
00...00011100 mem[0x00..1C] 7 (111) * —— If full, access to X will evict Y
00:::00011000 MOMmIDX00.:18] &0 * —— Capacity Miss when accessing Y again
00...00010100 mem[0x00...14] 5(101) . P y_ 9 9
00...00010000 mem[0x00...10] | 4(100)
00...00001100 mem[0x00...0C] 3(011) * Q : How to choose Y to minimize chance of
00...00001000 mem[0x00...08] 2(010) * needing it again ?
%“%%%% m”gﬁggg) ;gx; * A : Least Recently Used (LRU) Replacement
mem|0x00... . .
* —— Evict least recently used block in a set
230 \Word Main Memory 2% Word Cache ¥

B
// Cache: 2~30 Word Main Mem Directly

Memory Tag
Address

+ G Byte
Memewprbor o ngy:
Data
8-entry x
(1+27+32)-bit
SRAM
! 27 32
r:
o
Hit Data
Byte
Tag Set Offset
Memory 556517001100 |
Address 3
V Tag Data
0 Set 7 (111)
0 Set 6 (110)
0 Set 5 (101)
0 Set 4 (100)
0 Set 3 (011)
0 Set 2 (010)
{1 | 00..00 | MeMOXYV--O4 | Set 1 (001)
0) " | Set 0 (000)
-

Way 1

/ Direct Maeging (one block per set)

e
Set Offset

Way 0O

Data

11
V Tag Data

:3§5Way1

Way 0

Tag

Data

Tag

Data

G =

Hit

J[az

Data
E—

Hit

olo|lolo | <]

Set 3
Set 2
Set 1
Set0

L=
/ 2-Way Set Associative (two blocks per set)

vV Tag Data vV Tag Data Vv Tag Data VvV Tag Data v Tag Data V Tag Data v Tag Data Vv Tag Data
[[[[] |

Expensive to build

// Fully Associative (all cache blocks are within one set)

sy
Memory 19 Set Of?:et(éf(fy;sit Block yte

Address

8 I I L emor Tag Set Offset Offset
i | | & Y 1100..100] 1 | 11 |00
I *27‘ {32 {32 132 132 ddress ! 1)]

Hit ta

// Direct Mapping (all cache blocks (4 words each) are within one set)

2
* Types of misses (3):

* (1) Compulsory : First time data accessed

* (2) Capacity : Cache is too small to hold all data of interest

* (3) Conflict : Data of interest maps to same location in cache

* Miss penalty : time it takes to retrieve a block from lower level of hierarchy

* —-— Bigger blocks reduce compulsory misses but increase conflict misses

* —— Multilevel caches will have lower miss rates but longer access times

*

Typical levels : Modern day PCs have L1, L2, L3 cache

//
//
//

//
//

/*

*

*

R R S R T S I S NS N ST SRS T S N S S S R N ST ST S S N S

L S S T S S

(3) Disks_& RAIDs

MAJOR COMPUTER_COMPONENTS : { (1) Processor (control, datapath), (2) Memory, (3) Devices (I/O) }
MEMORY (current focus) : { Secondary Memory (Disk), Main Memory, Cache }

MAGNETIC DISKS:

PURPOSE \ / -- Sectors of a track

======= ((0)) =-- Track of a platter (magnetic disk)
-- Long term, nonvolatile storage

-- Lowest level in the memory hierarchy (slow, large, inexpensive)

General Structure:

-- Rotating platter coated w/ a magnetic surface

-- Moveable r/w head to access the information on the disk

-- Cylinder refers to all the tracks under the head at a given point on all surfaces

Typical Numbers:

-- 1 to 4 (1 or 2 surface) platters per disk of 1" - 3.5"

-- Rotational speeds of 5,400 to 15,000 RPM

-- 10,000 to 50,000 tracks per surface

-- 100 to 500 sectors per track (smallest unit that may be read / written (typically 512B))

DISK R/W COMPONENTS

(1) Seek Time : Time to position the head over the proper track (3 to 14 ms avg)

(2) Rotational Latency : Time to Wait for sector to rotate under head (1/2 of 1/RPM convert2ms)
-- 0.5 / 5400 RPM = 5.6 ms to 0.5 / 15000 RPM = 2.0 ms
-- Usually largest component of the access time

(3) Transfer Time : Time to transfer block of bits (one or more sectors)
under the head to the disk controller's cache (30 to 80 MB/s avg rates)
-- Disk controller's "cache" uses spatial locality in disk accesses
-- Cache transfer rates are much fasater (e.g., 320 MB/s)

(4) Controller Time : Time to perform disk I/0 access overhead by disk controller (<.2ms avg)
DEPENDABILITY, RELIABILITY, AVAILABILITY
MTTF : Reliability -- Measured by the mean time to failure (MTTF)
MTTR : Service Interruption -- measured by the mean time to repair (MTTR)
Availability = MTTF / (MTTF + MTTR)
Increase MTTF by either:
-- improving the quality of the components, or
-- designing the system to continue operating in the presence of faulty components
Fault Avoidance : Preventing fault occurrence by construction
Fault Tolerance : Correcting ot bypassing faulty components (HW) via redundancy
Track
Sector Controller
+ Sector
Cache

Cylinder

Track

——Platter

Head

~
*

REDUNDANT ARRAY OF INDEPENDENT DISKS (RAIDs): Disk Arrays

*

Arrays of small & inexpensive disks increase potential throughput by having many disk drives

-- Data spread over multiple disks, allows for multiple accesses made to several disks at a time
Reliability is lower than a single disk

Availability can be improved by adding redundant disks (RAID)

MTTE : Mean time to failure of disks is tens of years
MTTR : Mean time to repair is in the order of hours

L

*

* RAID Level 0: Stripping; No redundancy

* | ((blkl) (blk2) (blk3) (blk4d) |
* —-- Mult sml disks, opposed to 1 lrg disk; no cost diff

* —- Failure of one or more disks is more likely as the number of disks in sys increases

*

* Stiping:

* —-— Spreading the blocks over multiple disks, meaning multiple blocks may be accessed in parallel
* —- Which greatly increases performance --> A 4-disk sys has 4x the throughput of a 1-disk sys

K e e e e e o o o o o o o o o o o o o o o o o e o e o o o o o o e e o o e e e o o e o e e o e e e o o o e o e o o o o e e e e
* RAID Level 1: Redundancy via Mirroring

*

* Data Disks: | Redundant (check) Data |

* | ((blkl1.1) (blkl.2) (blkl.3) (blkl.4) | (blkl.1) (blkl.2) (blkl.3) (blkl.4) |

*

* -- 2x num of disks as RAID 0 (e.g., 4-disk RAID 0 --> 8-disk RAID 1, w/ 2 sets of 4 data disks)
* —— numRedundantDisks = numDataDisks (i.e., twice the cost of one big disk)

* —— Writes must be made to both sets of disks

* —— If one disk fails, the sys goes to the "mirror" for data

*

* RAID Level 3: Bit-Interleaved Parity

*

* Data Disks: | (odd) Bit Parity Disk |

* (1) (_0.) (1) (_0.) | (1) |

* blkl,b0 blkl,bl blkl,b2 blkl,b3 | |

* Disk Fails | |

. _

* —— N number of disks in a protection group

* —— numRedundantDisks = 1x numProtectionGroups (i.e., twice the cost of one big disk)

* —-— Writes require writing the new data to the data disk as well as computing the parity

* —-- Computing the parity involves reading the other disks so that the parity disk may be updated
*

* -— Can tolerate limited disk failure, since the data can be reconstructed

* —-- Reads require reading all the operational data disks as well as the parity disk

* -- in order to calculate the missing data that was stored on the failed disk
g S,
* RAID Level 4: Block-Interleaved Parity

*

* Data Disks: | Block Parity Disk |

* | ((blkl) (blk2) (blk3) (blkd) | () |

*

* -- The parity is stored as blocks associated with sets of data blocks

* —— 4x the throughput (stripping)

* —- numRedundantDisks = 1x numProtectionGroups

* —— Supports "small reads" & "small writes" (going to only a few data disk in a protection group)
* —-— Watching which bits change when writing, need only change corresponging bits on parity disk
* —— Parity disk must be updated on every write, so it is a bottleneck for back-to-back writes

*

-- Can tolerate limited disk failure, since the data can be reconstructed

*/
IRATD 3 small writes RAD 4 small writes
New D1 data New D1 data

3 reads and ® 1 reads and
2 writes ey S 2 writes
involving all - -}@ nvolving just
the disks bz] [bs] [D4] oo o D1 D2 D3 D4 P

/* OpSys NOTES:

* RAID-0 (striping): Spliting array of blocks across multiple disks (via RR)

* pros: faster r/w speeds | cons: no data redundancy
S
* RAID-1 (mirroring): Duplicating full chunks of data onto multiple disks

* pros: redundancy of data (not striping) [cons: slower (double the writing)

K e e e o o o o o o o o o o o o o o e e
* Single-Disk vs. Two-Disk RAID-0

*

* 2Disk RAIDO: higher chance of data loss, no redundancy, very fast for r/w

* Single Disk: better data integrity, slower due to only single disk for r/w
e
* Single-Disk vs. Two-Disk RAID-1

*

* 2Disk_RAID1: fault tolerance (redundancy) but halves storage, slower r/w

*

Single Disk: faster for r/w, equivalent storage space, zero data backup

// (4) CPU_Performance
[/ === oo

/* CPU:

* mmm—e—e—— e ——

* Response Time (latency) -- Time between start & completion of a task (aka execution time)
* Throughput -- Total amount of work done in a given time period

*

* Clock: Used as a computer performance measurement

*

Ticks: Used to indicate start times of activities

*

*
=1

Q
o
[\
purt
-
[¢]
=]
0

* mmmm=———=—==

* Clock Rate (frequency) = cycles per second (1lHz = 1 cycle / sec)

* Cycle Time (time btwn ticks) = seconds per cycle (time between ticks)

* CPU_ExecTime = CPU_clockcycles x ClockCycle time

* = CPU ClockCycles / Clock Rate

K e e e e e o o e o o e e o e e o o e o e e e e e e o e e e e e o e o e e e e e e e e e e e e

* Execution time normal reported in cycles, not seconds: seconds cycles seconds
_______ = ————— % B,

* program program cycle

K e e e o o o o o o o o o o o o o e e

* HW Performance Improvement Methods:

*

* (1) Reducing length of the clock cycle, or

* (2) Reducing number of clock cycles required for a program

S

*/

/* CLOCK CYCLES PER INSTRUCTION (CPI):

* —-- Average number of clock cycles that each instruction takes to execute
* —-- Provides a way to compare 2-different implmentations of the same instruction set architecture

Basic performance equation in terms of instruction count, CPI, & clock cycle time

CPU_Time = Instruction Cnt x CPI x ClockCycle_Time
= Instruction Cnt x CPI / Clock Rate

* %k ok %
|

These formulas are key as they separate the three key factors that affect performance

*

Performance is specific to a particular program
Total execution time is a consistent summary of performance

Increased performance of a given architecture is done by:

-- Increasing Clock Rate (without adverse CPI affects)

-- Improving Processor Organization that will lower CPI

-- Enhancing Compiler that will lower CPI &/or instruction count

* % X ok % % X

PERFORMANCE & EXECUTION TIME EX:
Replacing processor w/ faster version
-- Increases response time && Increases throughput

* Add multiple processors to a system that already uses multiple processors for separate tasks

*

LR R T

*

/*

-- Increases throughput, but no one task will get work done fast (no increased response time)

Performance & execution time relationship in computer X

Performance X = 1 / Execution Time X

For computers X & Y:

Performance X / Performance Y = n <==> "X is n times faster than Y"

Performance X = Execution Time Y = n

Problem 1: Which machine is faster?

machine A runs a program in 10 secs
machine B runs the dame program in 15 secs

A is faster

Execution Time B = 15 = n = 1.5

Execution Time A = 10

Machine A is 1.5 times faster than machine B

200 Mhz Clk has a cycle time of 1 / (200 * 10”6) = 5*10"(-9) = 5 nanoseconds

* NOTE: Different instructions take different amounts of time on different machines

*

*

% ok X X o % %

NOTE: Mult requires more time than Add; Floating Point operations require more than integer ops

CPI EX 1: 2 implementations of the same instruction set architecture (ISA).

Machine A has a clock cycle time of 10 ns and a CPI of 2.0 for a given program
Machine B has a clock cycle time of 20 ns and a CPI of 1.2 for that same program

Which machine is faster? By how much?

machine A runs is 1.2x faster than machine B

